练习题
对于下列每个级数:
i) 说明级数是否收敛,并给出理由
ii) 如果级数收敛,求无穷和
a) \( 1 + 0.1 + 0.01 + 0.001 + \ldots \)
b) \( 1 + 2 + 4 + 8 + 16 + \ldots \)
c) \( 10 - 5 + 2.5 - 1.25 + \ldots \)
d) \( 2 + 6 + 10 + 14 + \ldots \)
e) \( 1 + 1 + 1 + 1 + 1 + \ldots \)
f) \( 3 + 1 + \frac{1}{3} + \frac{1}{9} + \ldots \)
g) \( 0.4 + 0.8 + 1.2 + 1.6 + \ldots \)
h) \( 9 + 8.1 + 7.29 + 6.561 + \ldots \)
a) i) 收敛,因为 \( |r| = 0.1 < 1 \)
ii) \( S_{\infty} = \frac{1}{1-0.1} = \frac{1}{0.9} = \frac{10}{9} \)
b) i) 发散,因为 \( |r| = 2 \geq 1 \)
ii) 不存在无穷和
c) i) 收敛,因为 \( |r| = 0.5 < 1 \)
ii) \( S_{\infty} = \frac{10}{1-(-0.5)} = \frac{10}{1.5} = \frac{20}{3} \)
d) i) 发散,因为这是等差数列,不是几何级数
ii) 不存在无穷和
e) i) 发散,因为 \( |r| = 1 \geq 1 \)
ii) 不存在无穷和
f) i) 收敛,因为 \( |r| = \frac{1}{3} < 1 \)
ii) \( S_{\infty} = \frac{3}{1-\frac{1}{3}} = \frac{3}{\frac{2}{3}} = \frac{9}{2} \)
g) i) 发散,因为这是等差数列,不是几何级数
ii) 不存在无穷和
h) i) 收敛,因为 \( |r| = 0.9 < 1 \)
ii) \( S_{\infty} = \frac{9}{1-0.9} = \frac{9}{0.1} = 90 \)
几何级数的首项是10,无穷和是30。求公比。
\( S_{\infty} = \frac{a}{1-r} = 30 \)
\( \frac{10}{1-r} = 30 \)
\( 1-r = \frac{10}{30} = \frac{1}{3} \)
\( r = 1 - \frac{1}{3} = \frac{2}{3} \)
几何级数的首项是-5,无穷和是-3。求公比。
\( S_{\infty} = \frac{a}{1-r} = -3 \)
\( \frac{-5}{1-r} = -3 \)
\( 1-r = \frac{-5}{-3} = \frac{5}{3} \)
\( r = 1 - \frac{5}{3} = -\frac{2}{3} \)
几何级数的无穷和是60,公比是 \(\frac{2}{3}\)。求首项。
\( S_{\infty} = \frac{a}{1-r} = 60 \)
\( \frac{a}{1-\frac{2}{3}} = 60 \)
\( \frac{a}{\frac{1}{3}} = 60 \)
\( 3a = 60 \)
\( a = 20 \)
几何级数的公比是 \(-\frac{1}{3}\),\( S_{\infty} = 10 \)。求首项。
\( S_{\infty} = \frac{a}{1-r} = 10 \)
\( \frac{a}{1-(-\frac{1}{3})} = 10 \)
\( \frac{a}{1+\frac{1}{3}} = 10 \)
\( \frac{a}{\frac{4}{3}} = 10 \)
\( \frac{3a}{4} = 10 \)
\( a = \frac{40}{3} \)
求等于循环小数 0.23 的分数。
将循环小数表示为几何级数:\( 0.23 = \frac{23}{100} + \frac{23}{10000} + \frac{23}{1000000} + \ldots \)
\( 0.23 = \frac{23}{100} + \frac{23}{10000} + \frac{23}{1000000} + \ldots \)
这是一个首项 \( a = \frac{23}{100} \),公比 \( r = \frac{1}{100} \) 的几何级数。
因为 \( |r| = \frac{1}{100} < 1 \),级数收敛。
\( S_{\infty} = \frac{a}{1-r} = \frac{\frac{23}{100}}{1-\frac{1}{100}} = \frac{\frac{23}{100}}{\frac{99}{100}} = \frac{23}{99} \)
所以 \( 0.23 = \frac{23}{99} \)
几何级数 \( a + ar + ar^2 + \ldots \),\( S_3 = 9 \) 且 \( S_{\infty} = 8 \),求 a 和 r 的值。
\( S_3 = \frac{a(1-r^3)}{1-r} = 9 \) ... (1)
\( S_{\infty} = \frac{a}{1-r} = 8 \) ... (2)
从方程(2):\( a = 8(1-r) \)
代入方程(1):
\( \frac{8(1-r)(1-r^3)}{1-r} = 9 \)
\( 8(1-r^3) = 9 \)
\( 1-r^3 = \frac{9}{8} \)
\( r^3 = 1-\frac{9}{8} = -\frac{1}{8} \)
\( r = -\frac{1}{2} \)
\( a = 8(1-(-\frac{1}{2})) = 8 \times \frac{3}{2} = 12 \)
给定几何级数 \( 1 - 2x + 4x^2 - 8x^3 + \ldots \) 是收敛的,
a) 求 x 的可能值范围
b) 求 \( S_{\infty} \) 关于 x 的表达式
a) 级数收敛当且仅当 \( |r| < 1 \)
这里 \( r = -2x \),所以 \( |-2x| < 1 \)
\( |x| < \frac{1}{2} \)
所以 \( -\frac{1}{2} < x < \frac{1}{2} \)
b) \( S_{\infty} = \frac{a}{1-r} = \frac{1}{1-(-2x)} = \frac{1}{1+2x} \)
收敛几何级数的公比是 r,首项是2。给定 \( S_{\infty} = 16 \times S_3 \),
a) 求公比的值,精确到4位有效数字
b) 求第4项的值
a) \( S_3 = \frac{2(1-r^3)}{1-r} \)
\( S_{\infty} = \frac{2}{1-r} \)
\( \frac{2}{1-r} = 16 \times \frac{2(1-r^3)}{1-r} \)
\( \frac{2}{1-r} = \frac{32(1-r^3)}{1-r} \)
\( 2 = 32(1-r^3) \)
\( 1-r^3 = \frac{2}{32} = \frac{1}{16} \)
\( r^3 = \frac{15}{16} \)
\( r = \sqrt[3]{\frac{15}{16}} \approx 0.9682 \)
b) 第4项 \( = ar^3 = 2 \times \frac{15}{16} = \frac{15}{8} \)
几何级数的首项是30。级数的无穷和是240。
a) 证明公比 r 是 \(\frac{7}{8}\)
b) 求第4项和第5项的差,精确到3位有效数字
c) 计算前4项的和,精确到3位有效数字
d) 级数前 n 项的和大于180。计算 n 的最小可能值
a) \( S_{\infty} = \frac{a}{1-r} = 240 \)
\( \frac{30}{1-r} = 240 \)
\( 1-r = \frac{30}{240} = \frac{1}{8} \)
\( r = 1 - \frac{1}{8} = \frac{7}{8} \) ✓
b) 第4项 \( = 30 \times \left(\frac{7}{8}\right)^3 = 30 \times \frac{343}{512} = \frac{10290}{512} \)
第5项 \( = 30 \times \left(\frac{7}{8}\right)^4 = 30 \times \frac{2401}{4096} = \frac{72030}{4096} \)
差 \( = \frac{10290}{512} - \frac{72030}{4096} = \frac{82320}{4096} - \frac{72030}{4096} = \frac{10290}{4096} \approx 2.51 \)
c) \( S_4 = \frac{30(1-(\frac{7}{8})^4)}{1-\frac{7}{8}} = \frac{30(1-\frac{2401}{4096})}{\frac{1}{8}} = 8 \times 30 \times \frac{1695}{4096} \approx 99.3 \)
d) \( S_n = \frac{30(1-(\frac{7}{8})^n)}{1-\frac{7}{8}} = 8 \times 30(1-(\frac{7}{8})^n) = 240(1-(\frac{7}{8})^n) > 180 \)
\( 1-(\frac{7}{8})^n > \frac{180}{240} = \frac{3}{4} \)
\( (\frac{7}{8})^n < \frac{1}{4} \)
取对数:\( n\log(\frac{7}{8}) < \log(\frac{1}{4}) \)
\( n > \frac{\log(\frac{1}{4})}{\log(\frac{7}{8})} \approx 10.8 \)
所以最小的 n 值是 11
几何级数的首项是 a,公比是 r。级数的第2项是 \(\frac{15}{8}\),无穷和是8。
a) 证明 \( 64r^2 - 64r + 15 = 0 \)
b) 求 r 的两个可能值
c) 求对应的两个可能 a 值
d) 给定 r 取较小的值,求 \( S_n \) 超过7.99的最小 n 值
a) 第2项:\( ar = \frac{15}{8} \) ... (1)
无穷和:\( \frac{a}{1-r} = 8 \) ... (2)
从方程(2):\( a = 8(1-r) \)
代入方程(1):\( 8(1-r)r = \frac{15}{8} \)
\( 8r(1-r) = \frac{15}{8} \)
\( 64r(1-r) = 15 \)
\( 64r - 64r^2 = 15 \)
\( 64r^2 - 64r + 15 = 0 \) ✓
b) 解方程:\( 64r^2 - 64r + 15 = 0 \)
\( r = \frac{64 \pm \sqrt{64^2 - 4 \times 64 \times 15}}{2 \times 64} = \frac{64 \pm \sqrt{4096 - 3840}}{128} = \frac{64 \pm \sqrt{256}}{128} = \frac{64 \pm 16}{128} \)
\( r = \frac{80}{128} = \frac{5}{8} \) 或 \( r = \frac{48}{128} = \frac{3}{8} \)
c) 当 \( r = \frac{5}{8} \) 时:\( a = 8(1-\frac{5}{8}) = 8 \times \frac{3}{8} = 3 \)
当 \( r = \frac{3}{8} \) 时:\( a = 8(1-\frac{3}{8}) = 8 \times \frac{5}{8} = 5 \)
d) r 取较小值 \( \frac{3}{8} \),a = 5
\( S_n = \frac{5(1-(\frac{3}{8})^n)}{1-\frac{3}{8}} = \frac{5(1-(\frac{3}{8})^n)}{\frac{5}{8}} = 8(1-(\frac{3}{8})^n) > 7.99 \)
\( 1-(\frac{3}{8})^n > \frac{7.99}{8} = 0.99875 \)
\( (\frac{3}{8})^n < 0.00125 \)
取对数:\( n\log(\frac{3}{8}) < \log(0.00125) \)
\( n > \frac{\log(0.00125)}{\log(\frac{3}{8})} \approx 6.8 \)
所以最小的 n 值是 7